NUMBER SYSTEM

Natural Numbers : Numbers which are used for counting the objects are called natural numbers. They are denoted by N .
$\mathrm{N}=\{1,2,3 \ldots \ldots \ldots \ldots \ldots \ldots .$.

All positive integers are natural numbers.

Whole numbers :- When 'zero' is included in the natural numbers, they are known as whole numbers.

They are denoted by W.
$W=\{0,1,2,3 \ldots \ldots \ldots \ldots \ldots$.

Integers: All natural numbers, zero and negatives of natural numbers are called as integers.

They are denoted by I.
$I=\{\ldots \ldots \ldots \ldots \ldots \ldots \ldots,-3,-2,-\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3} \ldots \ldots \ldots \ldots \ldots \ldots$.

$$
\underline{p}
$$

Rational numbers: The numbers which can be expressed in the form of q where P and Q are integers and $q \neq O$ are called rational numbers

They are called by Q .

$$
\text { E.g. }=\frac{1}{2}, \frac{12}{8},-6\left(\text { as }-6=\frac{-6}{1}\right) \text { etc. }
$$

Irrational numbers: The numbers which cannot

$$
\underline{p}
$$

Q are integers and $q \neq O$ are called irrational numbers.

$$
\text { e.g.- } \sqrt{3}, \sqrt{7}, \frac{2}{17} \text { etc }
$$

When these numbers are expressed in decimal form, they are neither terminating nor repeating.
e.g. $=\frac{1}{7}, \frac{2}{17}$ etc.

Real numbers : Real numbers include both rational as well as irrational numbers.

Positive or negative, large or small, whole numbers or decimal numbers are all real numbers.
e.g. $=1, \quad 13.79, \quad-0.01, \frac{2}{3}$ etc.

Imaginary numbers : An imaginary number is a complex number that can be written as a real number multiplied by the imaginary unit ' i ' which is defined by its properly $i^{2}=-1$

Note : Zero (0) is considered to be both real and imaginary number.

Prime number: A prime number is a natural number greater than 1 and is divisible only by 1 and itself.
e.g.2, 3, 5, 7, 11, 13, 17,19 \qquad .etc.

Note :- 2 is the only even prime number.

Composite Numbers: A number, other than 1, which is not a prime number is called a composite number .

E.g. 4, 6, 8, 9, 10, 12, 14, 15

\qquad etc.

Note :1 1 is neither a prime number nor a composite number.

2 there are 25 prime numbers between 1 and 100 .

To find whether a number is prime or not-

To check whether the number is prime or not,

1 We take an integer larger than the square root of the number. Let the number be ' k '.

2 Test the divisibility of the given number by every prime number less than ' k '.

3 If it is not divisible by any of them, then the given number is prime otherwise it is a composite number.
E.g. $=$ Is 881 a prime number ?

Sol- The appropriate square root of 881 is 30 .

Prime number less than 30 are $2,3,5,7,11,13,17,19,23,29$.

881 is not divisible by any of the above numbers, so it is a prime minister.

Co-prime numbers: Two numbers are co-prime of their HCF is 1 .
E.g. $(2,3),(3,4),(5,7), \quad(3,13)$ etc.

Even numbers: The number which is divisible by 2 is called even number.
E.g. $-2,4,6,8$.

Odd numbers - The number which is not divisible by 2 is called odd number.
e.g. $=3,5,7,9 \ldots \ldots \ldots \ldots$

Consecutive numbers: A series of numbers in which the succeeding number is greater then the preceding number by 1 is called a series of consecutive numbers.
i.e., Difference between two consecutive numbers is 1 .

Some Rules on Counting Numbers

1. Sum of all the first n natural numbers

$$
=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
$$

Q. Find the sum of first 20 natural numbers.

Ans- Sum of 1 to 20

Sum of 1 to 20
$\frac{20(20+1)}{2}=210$
Q. Find the sum of numbers from 11 to 20.

Ans Sum of 1 to $20=\frac{20(20+1)}{2}=210$
Sum of 1 to $10=\frac{10(10+1)}{2}=55$
Sum of 11 to $20=210-55=155$
2. Sum of first n old numbers $=$

$$
n^{2}
$$

Q. What is the sum of first 10 odd numbers ?

Ans- Sum of first 10 odd numbers $=$
$(10)^{2}=100$
Q. Find the sum of $9+11+13+$. \qquad $+29$

Ans $-\mathbf{1 + 3 + 5}+\ldots \ldots \ldots \ldots+\mathbf{2 9}=(15)^{2}=225$
(as there are 15 odd numbers from 1 to 29)
$1+3+5+7=(4)^{2}=16$

$$
9+11+13+29=225-16=209
$$

3. Sum of first n even numbers

$$
n(n+1)
$$

Q. What is the sum of even numbers between 1 and 50 ?

Ans - No. of even numbers between 1 and $50=\frac{50}{2}=25$
Sum of even numbers between 1 and 50

$$
=25(25+1)=25 \times 26=650
$$

Q. Find the value of $12+14+$. \qquad +30 .

Ans- $\mathbf{(2 + 4 + 6 + . . .}$ \qquad +30) has 15 even numbers
$2+4+6+$ \qquad $.30=15(15+1)=240$

Similarly $2+4+6+8+10=5(5+1)=30$
$12+14$. \qquad $+\mathbf{3 0}=\mathbf{2 4 0}-30=210$
4. Sum of squares of first n natural numbers

$$
=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}
$$

Q. what is the value of $1^{2}+2^{2}+$ \qquad $+10^{2}$?
Ans- $1^{2}+2^{2}+$ \qquad .$+10^{2}$?

$$
\begin{aligned}
& =\frac{10(10+1)(2 \times 10+1)}{6} \\
& =\frac{10 \times 11 \times 21}{6}=385
\end{aligned}
$$

5. Sum of cubes of first n natural numbers.

$$
=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}
$$

Q. What is the value of $1^{3}+2^{3}+\ldots \ldots+5^{3}$?

Ans- $1^{3}+2^{3}+\ldots \ldots . .+5^{3}$

$$
=\left[\frac{5(5+1)}{2}\right]^{2}=\left[\frac{5 \times 6}{2}\right]^{2}=225
$$

Important Formulas of Number System

Formulas of Number Series

1. $1+2+3+4+5+\ldots+n=n(n+1) / 2$
2. $\left(1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}\right)=n(n+1)(2 n+1) / 6$
3. $\left(1^{3}+2^{3}+3^{3}+\ldots . .+n^{3}\right)=(n(n+1) / 2)^{2}$
4. Sum of first n odd numbers $=\mathrm{n}^{2}$
5. Sum of first n even numbers $=n(n+1)$

Mathematical Formulas

1. $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
2. $(a+b)^{2}=\left(a^{2}+b^{2}+2 a b\right)$
3. $(a-b)^{2}=\left(a^{2}+b^{2}-2 a b\right)$
4. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
5. $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)$
6. $\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right)$
7. $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right)$
8. When $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$
9. $(a+b)^{n}=a^{n}+\left({ }^{n} C_{1}\right) a^{n-1} b+\left({ }^{n} C_{2}\right) a^{n-2} b^{2}+\ldots+\left({ }^{n} C_{n-1}\right) a b^{n-1}+b^{n}$

DIVISIBILITY RULES

Divisible by 2 - If a number ends with $0,2,4,6,8$ then the number is divisible by 2.
Example $\mathbf{- 2 5 4}, \mathbf{3 2 6}, 3548,4210$. All number ends with $4,6,8,0$ so these numbers are divisible by 2.

Divisible by 3 - If sum of all the digits of a number is divisible by 3 , then the number itself, is also divisible by 3.

Example - 375,4251,78123. Here we are taking another example of $549-5+4+9=18$ which is divisible by 3, so 549 is also divisible by 3.

Divisible by 4 - If the last two digits of any number is divisible by 4 , then the number is also divisible by 4.

Example - 2348.Here last two digits 48 are divisible by 4, so 2348 is also divisible by 4.

Divisible by 5 - If a number ends with 0 or 5 , then it is divisible by 5 .
Example-340, 625.

Divisible by 6 - If a number is divisible by both 2 and 3, then it is divisible by 6 as well.
Example - 4536. Here the number ends on 6 which is divisible by 2 and the sum of digits $(4+5+3+6=18)$ which is divisible by 3 also, so the number 4536 is divisible by 6 .

Divisible by 8 - If the last three digits of a number can be divided by 8 , then the number is divisible by 8.

Example - 746848. Here last 3 digits 848 are divided by 8 , hence the number 746848 is divisible by 8.

Divisible by 10 - If a number ends with 0 , then it is divisible by 10 .

Example-120, 330, 500.

Divisible by 11 - If (sum of its digit in odd places) is subtracted by (sum of its digits in even places) = 0 or multiple of 11, then the number is divisible by 11.

Example -39798846Sum of digits at odd places $=3+7+8+4=22$ Sum of digits at even places $=$ $9+9+9+6=33$ Now $->33-22=11$ which is multiple of 11 so number is divisible.

Divisible by 12 - If a number is divisible by $\mathbf{3}$ and 4 both, then it will also be divisible by 12 as well.

Example - 4848 is divisible by 3 and 4 both, so it will be divisible by 12 also.

Divisible by 14 - If a number is divisible by 2 and 7 both, then it will also be divisible by 14 as well.

Example - 4242 is divisible by 2 and 7 both, so it will be divisible by 14 also.

Divisible by 15 - If a number is divisible by 3 and 5 both, then it will also be divisible by 15 as well.

Example - 4545 is divisible by 3 and 5 both, so it will be divisible by 15 also.

Divisible by 16 - A number is divisible by 16, if the number formed by the last 4 digits is divisible by 16.

Example - 7957536 Last four digits 7536 are divisible by 16.

Divisible by 24 - If a number is divisible by 3 and 8 both, then it will also be divisible by 14 as well.

Example - 4848 is divisible by 3 and 8 both, so it will be divisible by 24 also.

Divisible by 40 - If a number is divisible by 5 and 8 both, then it will also be divisible by 40 as well.

Example - 8080 is divisible by 5 and 8 both, so it will be divisible by 40 also.

Divisible by 80 - If a number is divisible by 5 and 16 both, then it will also be divisible by 80 as well.

Example - 80160 is divisible by 5 and 16 both, so it will be divisible by 80 also.

QUESTIONS FOR PRACTICE

Which one of the following is not a prime number?
A. 31
B. 61
C. 71
D. 91

Answer: Option D
Explanation:
91 is divisible by 7 . So, it is not a prime number.
$\left(112 \times 5^{4}\right)=$?
A. 67000
B. 70000
C. 76500
D. 77200

Answer: Option B
Explanation:
$\left(112 \times 5^{4}\right)=112 \times\left(\frac{10}{}\right)^{4}=\frac{112 \times 10^{4}}{=}=\frac{1120000}{}=70000$

It is being given that $\left(2^{32}+1\right)$ is completely divisible by a whole number. Which of the following numbers is completely divisible by this number?
A. $\left(2^{16}+1\right)$
B. $\left(2^{16}-1\right)$
C. $\left(7 \times 2^{23}\right)$
D. $\left(2^{96}+1\right)$

Answer: Option D
Explanation:
Let $2^{32}=x$. Then, $\left(2^{32}+1\right)=(x+1)$.
Let $(x+1)$ be completely divisible by the natural number N .
Then,
$\left(2^{96}+1\right)=\left[\left(2^{32}\right)^{3}+1\right]=\left(x^{3}+1\right)=(x+1)\left(x^{2}-x+1\right)$, which is completely divisible by N , since $(x+1)$ is divisible by N .

What least number must be added to 1056, so that the sum is completely divisible by 23 ?
A. 2
B. 3
C. 18
D. 21
E. None of these

```
Answer: Option A
Explanation:
    23) 1056 (45
        92
        ---
        136
        115
        ---
            21
Required number = (23 - 21)
    = 2.
```

$(935421 \times 625)=$?
A. 575648125
B. 584638125
C. 584649125
D. 585628125

Answer: Option B
Explanation:
$935421 \times 625=935421 \times 5^{4}=935421 \times\left(\frac{10}{2}\right)^{4}$
$=\frac{935421 \times 10^{4}}{2^{4}}=\frac{9354210000}{16}$
= 584638125
Q. The largest 4 digit number exactly divisible by 88 is:
A. 9944
B. 9768
C. 9988
D. 8888
E. None of these

Answer: Option A
Explanation:
Largest 4-digit number $=9999$
88) 9999 (113

88

119
88

319 264
--55

Required number $=(9999-55)$ $=9944$.
Q. Which of the following is a prime number?
A. 33
B. 81
C. 93
D. 97

Answer: Option D
Explanation:
Clearly, 97 is a prime number.
Q. What is the unit digit in $\left\{(6374)^{1793} \times(625)^{317} x\right.$ $\left.\left(341^{491}\right)\right\} ?$
A. 0
B. 2
C. 3
D. 5

Answer: Option A
Explanation:
Unit digit in $(6374)^{1793}=$ Unit digit in $(4)^{1793}$
$=$ Unit digit in $\left[\left(4^{2}\right)^{896} \times 4\right]$
$=$ Unit digit in $(6 \times 4)=4$
Unit digit in $(625)^{317}=$ Unit digit in $(5)^{317}=5$
Unit digit in $(341)^{491}=$ Unit digit in $(1)^{491}=1$
Required digit $=$ Unit digit in $(4 \times 5 \times 1)=0$.
Q. $5358 \times 51=$?
A. 273258
B. 273268
C. 273348
D. 273358

Answer: Option A

Explanation:

$$
\begin{aligned}
5358 \times 51 & =5358 \times(50+1) \\
& =5358 \times 50+5358 \times 1 \\
& =267900+5358 \\
& =273258
\end{aligned}
$$

Q. The difference of two numbers is 1365 . On dividing the larger number by the smaller, we get 6 as quotient and the 15 as remainder. What is the smaller number?
A. 240
B. 270
C. 295
D. 360

Answer: Option B
Explanation:
Let the smaller number be x. Then larger number $=(x+1365)$.
$\therefore x+1365=6 x+15$
$\Rightarrow 5 x=1350$
$\Rightarrow x=270$
\therefore Smaller number $=270$.
Q. $(12)^{3} \times 6^{4} \geqslant 432=$?
A. 5184
B. 5060
C. 5148
D. 5084
E. None of these

Answer: Option A
Explanation:
Given Exp. $=\frac{(12)^{3} \times 6^{4}}{432}=\frac{(12)^{3} \times 6^{4}}{12 \times 6^{2}}=(12)^{2} \times 6^{2}=(72)^{2}=5184$
Q. $72519 \times 9999=$?
A. 725117481
B. 674217481
C. 685126481
D. 696217481
E. None of these

Answer: Option A
Explanation:
$72519 \times 9999=72519 \times(10000-1)$

$$
\begin{aligned}
& =72519 \times 10000-72519 \times 1 \\
& =725190000-72519 \\
& =725117481 .
\end{aligned}
$$

Q. If the number $517^{*} 324$ is completely divisible by 3 , then the smallest whole number in the place of * will be:
A. 0
B. 1
C. 2
D. None of these

Answer: Option C

Explanation:
Sum of digits $=(5+1+7+x+3+2+4)=(22+x)$, which must be divisible by 3 .
$\therefore x=2$.
Q. The smallest 3 digit prime number is:
A. 101
B. 103
C. 109
D. 113

Answer: Option A
Explanation:
The smallest 3-digit number is 100 , which is divisible by 2 .
$\therefore 100$ is not a prime number.
$101<11$ and 101 is not divisible by any of the prime numbers 2 , $3,5,7,11$.
$\therefore 101$ is a prime number.
Hence 101 is the smallest 3 -digit prime number.
Q. Which one of the following numbers is exactly divisible by 11?
A. 235641
B. 245642
C. 315624
D. 415624

Answer: Option D
Explanation:
$(4+5+2)-(1+6+3)=1$, not divisible by 11 .
$(2+6+4)-(4+5+2)=1$, not divisible by 11 .
$(4+6+1)-(2+5+3)=1$, not divisible by 11 .
$(4+6+1)-(2+5+4)=0$, So, 415624 is divisible by 11 .
Q. (?) $-19657-33994=9999$
A. 63650
B. 53760
C. 59640
D. 61560
E. None of these

Answer: Option A
Explanation:

```
    19657
9999
    33994 Then, x = 9999 +
53651=63650
    -----
    53651
    -----
```

Q. The sum of first 45 natural numbers is:
A. 1035
B. 1280
C. 2070
D. 2140

Answer: Option A
Explanation:
Let $S_{n}=(1+2+3+\ldots+45)$. This is an A.P. in which $a=1, d=1$, $\mathrm{n}=45$.
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2} \begin{gathered}{[2 a+(n-} \\ 1) d]\end{gathered}=\frac{45}{2} \times\left[\begin{array}{c}2 \times 1+(45- \\ 1) \times 1]\end{array}=\left(\begin{array}{cc}\frac{45}{2} & \mathrm{x} \\ 46\end{array}\right)=(45 \times\right.$
$=45 \times(20+3)$
$=45 \times 20+45 \times 3$
$=900+135$
$=1035$.

Shorcut Method:

$\mathrm{S}_{\mathrm{n}}=\frac{n(n+1)}{2}=\frac{45(45+1)}{2}=1035$.
Q. Which of the following number is divisible by 24 ?
A. 35718
B. 63810
C. 537804
D. 3125736

Answer: Option D
Explanation:
$24=3 \times 8$, where 3 and 8 co-prime.
Clearly, 35718 is not divisible by 8 , as 718 is not divisible by 8 .
Similarly, 63810 is not divisible by 8 and 537804 is not divisible by 8 .

Consider option (D),
Sum of digits $=(3+1+2+5+7+3+6)=27$, which is divisible by 3 .

Also, 736 is divisible by 8 .
$\therefore 3125736$ is divisible by (3×8), i.e., 24 .
$\frac{\text { Q. } 753 \times 753+247 \times 247-753 \times 247}{753 \times 753 \times 753+247 \times 247 \times 247}=?$
A. $\frac{1}{1000}$
B. $\frac{1}{506}$
C. $\frac{253}{500}$
D. None of these

Answer: Option A
Explanation:
Given Exp. $=\frac{\left(a^{2}+b^{2}-a b\right)}{\left(a^{3}+b^{3}\right)}=\frac{1}{(a+b)}=\frac{1}{(753+247)}=\frac{1}{1000}$
Q. (?) $+3699+1985-2047=31111$
A. 34748
B. 27474
C. 30154
D. 27574
E. None of these

Answer: Option B
Explanation:
$x+3699+1985-2047=31111$
$\Rightarrow x+3699+1985=31111+2047$
$\Rightarrow x+5684=33158$
$\Rightarrow x=33158-5684=27474$.
Q. If the number 481 * 673 is completely divisible by 9 , then the smallest whole number in place of * will be:
A. 2
B. 5
C. 6
D. 7
E. None of these

Answer: Option D
Explanation:
Sum of digits $=(4+8+1+x+6+7+3)=(29+x)$, which must be divisible by 9 .
$\therefore \quad x=7$.
Q. The difference between the local value and the face value of 7 in the numeral 32675149 is
A. 75142
B. 64851
C. 5149
D. 69993
E. None of these

Answer: Option D
Explanation:
$($ Local value of 7$)-($ Face value of 7$)=(70000-7)=69993$
Q. The difference between a positive proper fraction and its reciprocal is $9 / 20$. The fraction is:
A. $\frac{3}{5}$
B. $\frac{3}{10}$
C. $\frac{4}{5}$
D. $\frac{4}{3}$

Answer: Option C
Explanation:
Let the required fraction be x. Then $\frac{1}{x}-x=\frac{9}{20}$

$$
\begin{array}{ll}
\therefore & \frac{1-x^{2}}{x}=\frac{9}{20} \\
\Rightarrow & 20-20 x^{2}=9 x \\
\Rightarrow & 20 x^{2}+9 x-20=0 \\
\Rightarrow & 20 x^{2}+25 x-16 x-20=0 \\
\Rightarrow & 5 x(4 x+5)-4(4 x+5)=0 \\
\Rightarrow & (4 x+5)(5 x-4)=0 \\
x=\frac{4}{5}
\end{array}
$$

Q. On dividing a number by 56 , we get 29 as remainder. On dividing the same number by 8 , what will be the remainder?
A. 4
B. 5
C. 6
D. 7

Answer: Option B
Explanation:
Formula: (Divisor*Quotient) + Remainder = Dividend.
Soln:
(56*Q)+29 = D -------(1)
D\%8 = R -------------(2)
From equation(2),
$\left(\left(56^{*} Q\right)+29\right) \% 8=R$
=> Assume Q = 1 .
=> $(56+29) \% 8=R$.
=> 85\% $=$ R
$\Rightarrow 5=R$.
Q. If n is a natural number, then $\left(6 n^{2}+6 n\right)$ is always divisible by:
A. 6 only
B. 6 and 12 both
C. 12 only
D. by 18 only

Answer: Option B
Explanation:
$\left(6 n^{2}+6 n\right)=6 n(n+1)$, which is always divisible by 6 and 12 both, since $n(n+1)$ is always even.
Q. $107 \times 107+93 \times 93=$?
A. 19578
B. 19418
C. 20098
D. 21908
E. None of these

Answer: Option C
Explanation:
$107 \times 107+93=(107)^{2}+(93)^{2}$
$=(100+7)^{2}+(100-7)^{2}$
$=2 \times\left[(100)^{2}+7^{2}\right] \quad\left[\right.$ Ref: $(a+b)^{2}+(a-b)^{2}=$ $\left.2\left(a^{2}+b^{2}\right)\right]$
= 20098
Q. What will be remainder when $\left(67^{67}+67\right)$ is divided by 68 ?
A. 1
B. 63
C. 66
D. 67

Answer: Option C
Explanation:
$\left(x^{n}+1\right)$ will be divisible by $(x+1)$ only when n is odd.
$\therefore\left(67^{67}+1\right)$ will be divisible by $(67+1)$
$\cdots\left(67^{67}+1\right)+66$, when divided by 68 will give 66 as remainder.

Question 1: The least number which when divided by $6,9,12,15$ and 18 leaves the same remainder 2 in each case is :
a) 180
b) 182
c) 178
d) 176

Question 2: What is the arithmetic mean of first 20 odd natural numbers ?
a) 19
b) 17
c) 22
d) 20

Question 3: The least number that should be added to 2055 , so that the sum is exactly divisible by 27 is
a) 28
b) 24
c) 27
d) 31

Question 4: The digit in the unit place in the square root of 66049 is
a) 3
b) 7
c) 8
d) 2

Question 5: A certain sum will amount to 12,100 in 2 years at 10% per annum of compound interest, interest being compounded annually. The sum is
a) 8000
b) 6000
c) 12000
d) 10000

SOLUTIONS

1) Answer (b)

The numbers $6,9,12,15,18$ leaves same remainder 2 in each case. So, what we need to do is find the L.C.M. of these numbers and add 2 to it L.C.M. of $6,9,12,15,18=180=>$ Required no. $=180+2=182$
2) Answer (d)

NOTE :- Sum of first ' n ' odd natural numbers $=n^{\wedge}\{2\}$
Sum of first ' n ' even natural numbers $=n(n+1)$ Sum of first 20 odd natural numbers $=20^{\wedge}\{2\}=400$ Arithmetic mean $=400 / 20=20$
3) Answer (b)

The remainder obtained by dividing 2055 by $27=3$ So, the least number that should be 'subtracted' from 2055 to make it perfectly divisible by $27=3$ and the least number that should be added $=27-3=$ 24
4) Answer (b)

Square root of $66049=257$ Thus, unit's digit $=7$
5) Answer (d)

